MRes Programme Content

The MRes component of the STOR-i programme consists of compulsory core modules which you will find listed below. The core modules provide a firm grounding in important subjects, with modules STOR601, STOR603 and STOR604 all offering much exposure to a diverse range of optional research topics from Statistics and Operational Research. This choice allows you to specialise in subjects that particularly interest you.

Core modules:

MATH 651: Likelihood Inference
MATH 653: Bayesian Inference
MATH 654: Computational Intensive Methods
MSCI 536: Optimisation
STOR 601: Training for Research and Industry
STOR 602: Probability and Stochastic Processes
STOR 603: PhD Research Proposal
STOR 604: Modern Topics in Statistics and Operational Research

During your first year as a STOR-i student you will study for an MRes covering the following areas:

Mathematical Core

Probability and Stochastic Processes

Introduction to probability, Markov processes, Poisson processes and their use for modelling. The evaluation of complex stochastic properties via simulation.

Optimisation

Linear programming, mixed-integer programming, heuristics for large scale problems, stochastic programming, stochastic dynamic programming.

Likelihood Inference

Model-based (likelihood) inference for generalised linear models and stochastic processes and model diagnostics, randomisation methods for non-parametric testing.

Computer Simulation

Modelling for planning and decision support, systems ideas including complexity and feedback, stochastic discrete event simulation, output analysis with model validation, computational challenges including parallelisation.


Bayesian Inference

Bayesian inference, prediction and decision making. Contrasts between Bayesian and classical statistics.


Computational Intensive Methods

Conjugate analyses, importance sampling approximations, and MCMC for analysing complex stochastic systems.

Modelling and Problem Solving

Skills for Research and Industry

Presentation skills for non-technical and technical talks/posters/web design. Computer skills including programming in R and Visual Basic.

Scientific Modelling

Skills for eliciting relevant background to problems through to conceptualising these in a model formulation which integrates the relevant scientific knowledge with STOR methods which capture an appropriate level of assumption.

Industrial Problem Solving Days

A current open industrial problem will be presented to the students in groups which are facilitated by staff and current students. An outline approach or solution will be developed for presentation to the collaborator.

Overview of Research Areas

Topical Research

Overview Presentations on thriving research areas in STOR. Students will be expected to produce a summary and a brief literature review.

PhD Research Proposal

Literature review, preliminary study and development of a firm plan for the PhD.

Click here to find out more about the remaining three years on the STOR-i training programme.